
Table of Contents
User guide. 1

Background . 1

Overview . 3

Administrative controls . 13

Managing credentials . 20

Using credentials . 50

User guide
This document provides guidelines for using the Credentials API.

This document is structured as follows:

• The first section provides dome background into the use cases driving the development of the
Credentials API.

• The second section is an overview of all the functionality provided by the Credentials API.

• The subsequent sections consider how to use the different pieces of functionality provided by
the Credentials API.

Background
In the ideal world, we wouldn’t need any secrets in order to build and deploy software or perform
any of the other automation tasks that Jenkins can be co-opted into.

But the reality is that in almost all cases even something as basic as building software requires at
least one secret:

• You need a SCM username/password to checkout the source code to build

Once you start using Jenkins for more than just Continuous Integration, you are going to find more
and more use cases for needing to share secrets with Jenkins:

• Building the release version of the application requires signing the application using a code
signing key.

• Deploying the application to staging requires the credentials for the staging environment

• Deploying the application to production requires the credentials for the production
environment

• Updating the issue tracker with details of relevant Jenkins builds requires credentials for the
issue tracker

• etc.

Before the introduction of the Credentials API plugin (in early 2012), each Jenkins plugin was
responsible for managing their own credentials. This meant that you would have to give the
Subversion plugin a username and password, you would also need to give the JIRA plugin a
username and password, etc. Perhaps the biggest issue would occur every 45-90 days… We should
all know that the current NIST standards recommend against enforced periodic password rotation,
but a lot of corporate IT SECURITY policies still mandate it. So your password has changed, welcome
to hell where you have to race to change all the places that you stored that password in Jenkins
before it attempts to use the old password more than three times causing your account to be locked
out, phone up the help-desk, get your password reset again and repeat.

This exact use case was the driver for the initial development of the Credentials API plugin.

With the Credentials API plugin, we get:

1

https://pages.nist.gov/800-63-3/

• An API for plugin authors to use to define credential types

• An API for plugin authors to use to integrate external credentials stores with Jenkins

• An API for plugin authors to use to retrieve credentials from credentials stores (transparently
integrating the internal/external credentials stores)

• A UI for users to manage the credentials available to Jenkins.

For the Jenkins user, this means that when the password (or other secret) needs updating, they only
have to update it once and all the plugins that have been using those credentials will immediately
switch to the new password, lockout prevented.

2

The Jenkins-internal credentials store

While the Credentials API plugin provides a default internal credentials store, the
intent is that other, more secure, external credentials stores will provide
integrations with the Credentials API.

If you are using the internal credentials store to store high value credentials then
you will need to lock down your Jenkins configuration:

• Apply all of the recommendations from the Securing Jenkins wiki page.

• No builds on the master (ideally zero executors)

• Probably use the Authorize Project plugin to control effective permission of
running builds.

• etc.

If a non-trusted user can gain access to the files in the JENKINS_HOME/secrets
directory, then it is game over.

While the above security recommendations are generally valid for any situation
where Jenkins has access to high value credentials, because:

• the internal store is stored in the JENKINS_HOME

• the internal store is encrypted using a key that is also stored in JENKINS_HOME

• the JVM running Jenkins must have access to these files

It becomes critical to secure the filesystem of the Jenkins master process.

With an external credentials store, access to the Jenkins master filesystem will not
generically compromise credentials. In the event of a breach, the last-accessed
tracking facilities of an enterprise-grade external store will enable identification of
at risk credentials in need of rotation.

Overview
In order to understand how to manage credentials with the Credentials API plugin, you need to
understand a number of Jenkins concepts:

• Contexts within Jenkins

3

https://wiki.jenkins.io/display/JENKINS/Securing+Jenkins
https://plugins.jenkins.io/authorize-project

• Authentication within Jenkins

• The Jenkins security model

The Credentials API plugin introduces some more concepts:

• Credentials types

• Credentials scopes

• Credentials domains

• Credentials providers

• Credentials stores

There are three ways to manage credentials with the Credentials API:

• Through the Web UI

• Through the REST API

• Through the Jenkins CLI

The holy grail is that each credentials selection lists will display exactly the relevant credentials:

Contexts within Jenkins

Jenkins implements a hierarchical context model. Every context within Jenkins has a chain of
parent contexts leading ultimately to the root context.

The root context is Jenkins itself. Plugins can define additional child contexts, for example the
Folders plugin adds the Folder context, but by default Jenkins provides the following child contexts
from the root context:

Jobs

Each job is its own context, the individual builds of a job could be considered as child contexts,
but no plugins currently make use of that potential.

Users

Each user recorded by Jenkins has their own context.

Build agents

Build agents have their own context, though this is typically not really relevant from the point of
view of credentials.

Views

Views have their own context. It is important to note that jobs are only weakly associated with
views, they are not child contexts of the views they are members of.

4

https://plugins.jenkins.io/cloudbees-folder

The hierarchical nature of contexts becomes more relevant once plugins such as the Folders plugin
are installed as then you can have more complex trees of jobs.

Authentication within Jenkins

Jenkins is a multithreaded application. Each execution thread has an associated authentication.
There are three classes of authentication that a thread can be associated with:

• ACL.SYSTEM this is the super-user authentication of the Jenkins master process itself. Also known
as SYSTEM. Any actions performed by Jenkins itself will start in a thread using this
authentication.

• A user authentication, this type of authentication is assigned to any web/CLI requests by a
logged in user. Additionally, plugins like Authorize Project plugin can be used to configure jobs
to run as specific users or even as the user that triggered the job.

• Jenkins.ANONYMOUS this is the authentication of a web/CLI request that has not been
authenticated. Also known as ANONYMOUS. Additionally, plugins like Authorize Project plugin can
be used to configure jobs to run as ANONYMOUS.

The Jenkins security model

Jenkins uses a permissions based security model. Different operations have different permissions.
Plugins can define their own permissions.

To determine whether an operation can be performed, Jenkins asks the currently configured
authorization strategy whether a specific authentication has the required permission in a specific
context.

The authorization strategy is an extension point and there are multiple plugins providing their own
implementations. In most cases, these strategies are mostly hierarchical, so if an authentication has
a permission in a parent context it will typically have the same permission in the children of that
context.

Authorization strategies that provide for use-cases such as secret skunkworks
projects may provide for removal of permissions from child contexts.

In short, each authorization strategy is provided with the :

• Permission requested

• Authentication requesting

• Context of request

And returns a yes / no answer.

Credentials types

Most people tend to think of there being only 5 or 6 types of credentials / secrets:

• Password

5

https://plugins.jenkins.io/cloudbees-folder
https://plugins.jenkins.io/authorize-project
https://plugins.jenkins.io/authorize-project

• Username and password

• SSH private key

• Public Certificate and private key

• Binary blob data

• That OAuth thingy

If we wanted to take things further, we could abstract them all away into some secret bytes and a
list of non-secret named properties.

From the point of view of somebody implementing a credentials management system, it is indeed
tempting to reduce credentials down to this basic primitive. From the perspective of users and
Jenkins, the reduction may end up throwing away useful information to assist in selecting the
correct credentials to use for different situations.

For example, technically you could choose to store the SSH private key in the "password" field of a
Username and Password (assuming there is no upper limit on password length). How would a user
know that wecoyote/ is the password credential while wecoyote/ is the one that shoved the SSH
private key into the password field? How would Jenkins know whether to try the password field
contents as a password or as a SSH private key?

Different plugins will provide different credentials types.

How are we supposed to determine which type to use?

You should choose the type based on the ability for the underlying secret to be consumed by other
systems. This principle is best illustrated by examples:

• What credentials type should I choose for entering my username and password for use to update
the issue tracker?

So the thing about issue trackers is that very often they can be integrated with the corporate
single-sign-on service. If that is the case, then there is a realistic chance that I might need to
reuse the username and password to authenticate with the source control system, etc. Thus, we
probably should prefer the more generic Username and password credentials type, because the
secret will likely be used by other plugins.

• What credentials type should I choose for entering my username and application token for use to
update the issue tracker?

Application tokens are typically generated by a service and associated with a user account. They
are designed to take the place of a password for that specific service and typically they will only
ever be displayed one time to the user. The user can see the details of last use for each
application tokens and can choose to revoke the application token at any time. In this case there
is zero chance of the application token being used by another service. We should use the most
specific credentials type supported by the plugins we are using. So if there is a Acme Corp Issue
Tracker Application Token credentials type provided by the Acme Corp Issue Tracker plugin,
even though the application token is logically equivalent to a password, we should choose the
specific credentials type. If the plugin doesn’t provide a dedicated credentials type, then in that

6

case we would fall back to Username and Password and we would likely have to leverage
Credentials Domains to try and recreate some of the contextual information that a service
specific credentials can provide.

The Jenkins Administrator can configure which credentials types are actually

permitted to be used in a Jenkins instance using the Jenkins › Manage Jenkins ›
Configure Credentials screen

Credentials scopes

Each credentials instance in the Credentials API plugin has an associated scope. The scope defines
how the credentials can be exposed.

System scope

This scope is only available in credentials stores associated with the root context. System scope
credentials are exposed to the Jenkins system / background tasks. For example, a system scoped
credential can be used to connect a build agent or to globally manage post-commit web hooks in
a source control system.

Global scope

This scope is the default scope. Global scope credentials are exposed to their associated context
and all child contexts. If you want credentials to be generally available to jobs, use Globals scope.

User scope

This scope is the only scope available in the per-user credentials store. User scope credentials
are only available to threads using that user’s authentication.

There are also two hidden permissions that interact with credentials scopes:

• Credentials/UseOwn which by default is implied by the Item/Build permission but can be turned
into a distinct permission with the system property
com.cloudbees.plugins.credentials.UseOwnPermission.

• Credentials/UseItem which by default is implied by the Job/Configure permission but can be
turned into a distinct permission with the system property
com.cloudbees.plugins.credentials.UseItemPermission.

By default, and unless the Authorize Project plugin has been installed, jobs
running in Jenkins will be running as ACL.SYSTEM and will only be able to access
global scoped credentials.

If you install the Authorize Project plugin and configure a job to run as a specific
user, the credentials available to that job will now be determined by that user’s
permissions in the context of that job. If the user does not have either
Credentials/UseOwn (normally implied by Item/Build) or Credentials/UseItem

(normally implied by Job/Configure) then the job will be unable to access any
credentials at all.

7

https://github.com/jenkinsci/credentials-plugin/blob/dc35d4d99f9d4e9bf5fd434aee4f6e1bfca4c47d/src/main/java/com/cloudbees/plugins/credentials/CredentialsProvider.java#L144
https://github.com/jenkinsci/credentials-plugin/blob/dc35d4d99f9d4e9bf5fd434aee4f6e1bfca4c47d/src/main/java/com/cloudbees/plugins/credentials/CredentialsProvider.java#L160
https://plugins.jenkins.io/authorize-project
https://plugins.jenkins.io/authorize-project

If a user has Credentials/UseOwn permission in a specific context then they are allowed to use their
user scoped credentials for actions performed with their authentication in that context. For
example, jobs running as the user’s authentication will have access to that user’s user scoped
credentials if and only if the user has Credentials/UseOwn permission in the context of that job.

If a user has Credentials/UseItem permissions in a specific context then they are allowed to use the
global scoped credentials for actions performed with their authentication in that context. For
example, jobs running as the user’s authentication will have access to the global scoped credentials
available in the context of that job if and only if the user has Credentials/UseItem in the context of
that job.

Credentials domains

The ideal case for managing credentials with the Credentials API plugin is that each service that
you have to interact with has a distinct independent secret lifecycle and a dedicated service specific
credentials type. In other words:

• The secret used to connect to one service is never (other than accidentally) the same as the
secret used to connect to any other service.

• Resetting the secret for one service will never trigger a reset of the secrets for other services
(procedurally you might have to reset them all after say a security breach, but they are not
inherently linked)

So, for example, you might have:

• a Google Authentication type that stores credentials used to interact with Google’s services;

• an AWS Authentication type that stores credentials used to interact with AWS;

• a Twitter Authentication type that stores the credentials used to tweet about releases after they
have been deployed to Google or AWS;

• a GitHub Authentication type that stores the credentials used to connect to GitHub;

• etc

Now the above would be OK, because - unless there are some corporate mergers - we do not expect
the secret used to connect to Google to be the same as the secret used to connect to AWS or Twitter
or GitHub.

In the enterprise world, typically the services can be moved in-house and with single-sign-on will
likely end up using username and password credentials.

Not every system will integrate with single-sign-on though, so it is likely that there will be multiple
username and password credentials with the same username but for different systems.

How can we recover the "type" information that we lost when we selected Username and Password?

The answer is Credentials Domains.

You define a credentials domain and you provide a specification. The specification will be
something like:

8

• Only hostname myservice.example.com

• Only URLs with the https protocol

• Only on port 8443

Now when the credentials API is asked to list up relevant credentials it will exclude credentials
from domains that do not match.

Pay very close attention.

"Excluding credentials from domains that do not match" is not the same as "Only
including credentials from domains that do match".

Initially, there is only one credentials domain, the global domain. The global domain has no
specification, so credentials in the global domain will always match any set of domain
requirements.

9

Example

If we have credentials in four different domains:

global

Global domain

secure-service

A domain with the specification: hostname is myservice.example.com; protocol is https; port
is 443.

public-service

A domain with the specification: hostname is myservice.example.com; protocol is http; port
is 80.

source-control

A domain with the specification: hostname is myscm.example.com; protocol is https; port is
443.

We start typing in the URL of the service we want to connect to.

The URL is empty, so the drop-down list will show credentials from all four domains.

Suppose we now have typed in https://, at this point the requirements are just that the
protocol is https, so as public-service has a specification of http it is excluded from the drop-
down list.

Suppose we now type in https://myservice.example.com, at this point we have the
requirements: protocol is 'https' and hostname is 'myservice.example.com', so both public-
service and source-control are now excluded.

Finally, suppose we had typed in myservice.example.com, in this case we exclude only source-
control as the requirements are just that the hostname is myservice.example.com

In all cases, the credentials from the global domain are always present.

10

https://myservice.example.com

The use-case for credentials domains is to provide a way for the user to provide
information about the services with which the credentials are expected to work.

Credential domains are intended to help select correct credentials for each
services.

Credential domains are not intended to prevent credentials from being used
against the wrong services.

In some cases, the domain requirements of a credential cannot be determined,
such as when using a credentials parameter or when using a plugin that has not
fully implemented the recommendations of the consumer guide.

In order to ensure that users can actually select the required credentials in these
cases, the Credentials API needs to return credentials from all domains, which is
why we use Excluding credentials from domains that do not match.

Because of the above: Credential domains are not intended to restrict access to
credentials.

If you need to restrict access to credentials put those credentials in a context that
limits their usage, e.g. create a "Deployment" folder and put the keys for deploying
into the "Deployment" folder, restrict access to the "Deployment" folder to only
those users permitted to deploy.

Credentials providers

The Jenkins extension point CredentialsProvider is responsible for connecting Jenkins to an
external credentials vault.

Not everyone will be exposing high value credentials to Jenkins. Similarly, not everyone needs the
complexity of an enterprise credentials vault. For people who do not need to use an enterprise
credentials vault, the Credentials API plugin provides two credentials providers and the Folders
plugin adds another for the folders contexts it adds to Jenkins.

The Jenkins Administrator can configure which credentials providers are actually

permitted to be used in a Jenkins instance using the Jenkins › Manage Jenkins ›
Configure Credentials screen

The standard credentials providers are:

System Credentials Provider

• This credentials provider exposes a credentials store at the root context.

• The credentials store supports credentials domains.

• The credentials store supports two scopes: system and global.

• The credentials store can be inspected from Jenkins › Credentials › System.

11

consumer.adoc
https://plugins.jenkins.io/cloudbees-folder
https://plugins.jenkins.io/cloudbees-folder

User Credentials Provider

• This credentials provider exposes a per-user credentials store for each user.

• The credentials store supports credentials domains.

• The credentials store only supports user scope.

• The credentials store can be inspected from either Jenkins › username in the banner bar ›
Credentials › User or Jenkins › People › username › Credentials › User.

• A user cannot access the per-user credentials store of another user.

The Folders plugin adds the following credentials provider:

Folder Credentials Provider

• This credentials provider exposes a per-folder credentials store in the context each folder.

• The credentials store supports credentials domains.

• The credentials store only supports global scope which will expose the credentials to any
children of the folder.

• The credentials store can be inspected from Jenkins › folder name › Credentials › Folder

Credentials stores

Credentials providers expose credentials to Jenkins through the credentials store extension point.

• A credentials store is associated with a specific context within Jenkins.

• A credentials store either only supports the global domain or has full support for custom
domains.

• A credentials store will support a defined list of credentials scopes.

• Some credentials stores are read-write and others are essentially read-only derived from a
computation.

• Internal credentials stores will be responsible for storing the actual credentials.

• External credentials stores can work in a number of different ways depending on the backing
external service:

◦ In some cases the external service provides essentially a flat namespace of credentials
without any ability to infer structure or list available credentials.

In these cases the external credentials store will hold the credentials identifiers and any
categorization within credentials domains.

In some cases the credentials store may need to store additional metadata in order to
reconstruct the Jenkins credentials.

◦ In some cases the external service provides a very rich metadata model and query language.

Jenkins can leverage a metadata property to associate credentials with the different Jenkins
contexts and perhaps even with infer credentials domains.

12

https://plugins.jenkins.io/cloudbees-folder

This type of credentials store is typically read-only though an advanced implementation
may be able to create credentials in the external vault and thereby present as a read-write
store.

Administrative controls

The administrative controls are available from Jenkins › Manage Jenkins › Configure Credentials:

Figure 1. The Jenkins › Manage Jenkins › Configure Credentials defaults

This allows for control over:

• the installed credentials providers that can be used to resolve credentials

• the installed credentials types that can be configured and resolved

• fine-grained configuration of specific credentials types on specific providers

Credentials providers can be configured using the Providers option

13

Figure 2. Restricting the available credentials providers to a subset of those installed.

For example if you want to prevent user’s from being able to store credentials in the per-user
credentials store you have two options:

• Configure an Excludes selected that targets the per-user credentials provider.

14

This has the side-effect that when you install plugins with new credentials providers they will
be available immediately after installation.

• Configure an Only selected that targets everything but the per-user credentials provider.

15

This has the side-effect that when you install plugins with new credentials providers you will
need to configure them before they are available.

there is nothing either good or bad, but thinking makes it so.

— William Shakespeare, Hamlet: Act 2, Scene 2

The two options:

• Only selected

• Exclude selected

Are logically equivalent. The difference between these two options is in how they
react as new plugins are installed.

Only selected is essentially a whitelist strategy. When new plugins are installed the
configuration will not automatically select any new options to be enabled.

Exclude selected is essentially a blacklist strategy. When new plugins are installed
the configuration will not automatically select any new options to be disabled.

The credentials types can also be configured with the same choice of: All available; Exclude selected;
and Only selected.

16

Figure 3. Restricting the available credentials types to a subset of those installed.

The final set of options are the fine-grained restrictions. With these you can define include or
exclude rules that determine the available credentials types for each individual credentials
provider.

• The restrictions rules are applied after the global settings and cannot override the global
settings.

• The restrictions rules are grouped by each credentials provider.

◦ If there is at least one includes rule for any specific credentials provider then only those
credentials types that have include rules for that provider will be available.

◦ Exclude rules are applied after include rules.

17

Figure 4. The two types of restrictions rules available

Understanding the Authorize Project Plugin and Credentials

Jenkins associates an authentication with all internal operations.

When a user makes a request from the web browser or from the Jenkins CLI, that
request is tagged with the user’s authentication and permission checks will restrict
the scope of that request to the user’s permissions.

The internal operations of Jenkins typically run with the authentication of SYSTEM
which is the most powerful authentication and has all permissions.

For simple build jobs, this is typically not an issue. More complex build jobs can
involve bi-directional control between Jenkins and the build job. If the build job
has the ability to control Jenkins itself, then the authentication that the build job is
running as within Jenkins becomes important.

The Authorize Project plugin was developed to allow jobs to run with a lesser
authentication.

In a Jenkins instance without the Authorize Project plugin (or an alternative plugin

providing a Queue item authenticator) the Jenkins › Manage Jenkins › Configure
Global Security screen will not show any Access control for builds options

18

https://wiki.jenkins-ci.org/display/JENKINS/Authorize+Project+plugin
http://javadoc.jenkins-ci.org/jenkins/security/QueueItemAuthenticator.html

Figure 5. The Configure Global Security screen without any Queue item authenticator
plugins installed

Once at least one Queue item authenticator is installed in the Jenkins instance,
then the configuration options will be displayed.

Figure 6. The Configure Global Security screen with at least one Queue item authenticator
plugins installed

The Access Control for Builds section is an ordered list of Queue item
authenticator. The first one that declares an interest in providing authentication
for the build job will determine the authentication that the build job will run as.

Figure 7. The Configure Global Security screen adding the Authorize Project plugin's
Queue item authenticator

19

http://javadoc.jenkins-ci.org/jenkins/security/QueueItemAuthenticator.html
http://javadoc.jenkins-ci.org/jenkins/security/QueueItemAuthenticator.html
http://javadoc.jenkins-ci.org/jenkins/security/QueueItemAuthenticator.html
http://javadoc.jenkins-ci.org/jenkins/security/QueueItemAuthenticator.html
http://javadoc.jenkins-ci.org/jenkins/security/QueueItemAuthenticator.html
https://wiki.jenkins-ci.org/display/JENKINS/Authorize+Project+plugin
http://javadoc.jenkins-ci.org/jenkins/security/QueueItemAuthenticator.html

To actually use the Authorize Project plugin you also need to enable it for the
specific build job.

Figure 8. Configuring a job to use the Authorize Project plugin

Once you switch jobs from running as SYSTEM you will encounter a feature of the
Credentials API, namely that credentials are only exposed to specific
authentications.

There is a permission within the Credentials plugin known as Credentials/UseItem.
In order for an authentication to be able to resolve a credentials in either the root
scoped store or a folder scoped store, that authentication must have the
Credentials/UseItem permission.

By default the Credentials/UseItem permission is hidden and users receive this
permission through implication by the Job/Configure permission. A Jenkins
administrator can make the permission visible by defining the
com.cloudbees.plugins.credentials.UseItemPermission system property with the
value of true, e.g. by adding
-Dcom.cloudbees.plugins.credentials.UseItemPermission=true to the Jenkins JVM
start-up options.

Managing credentials
The Credentials API plugin adds a Credentials action to every context item that has at least one
associated credentials store. By default, this means that there will be a Credentials action on:

• The Jenkins root object itself

20

https://wiki.jenkins-ci.org/display/JENKINS/Authorize+Project+plugin
https://wiki.jenkins-ci.org/display/JENKINS/Authorize+Project+plugin

• A user within Jenkins

21

• (If the folders plugin has been installed) A folder within Jenkins

22

These actions provide standardized interfaces for managing credentials.

23

Figure 9. Credentials Action UI elements

① Credentials available within the current context, both from the current context and parent
contexts

② A credentials instance from a parent scope that has been masked by a credentials instance with
the same ID in the current scope

③ The credentials stores in the current context

④ The credentials stores from parent contexts

⑤ Links with context menus

The main page of the credentials action consists of three tables:

1. The credentials available within the current context. There are six columns:

◦ Type

◦ Provider

◦ Store

◦ Domain

◦ ID

◦ Name

24

Any credentials from parent contexts that have been masked by credentials with a the same ID
will be shown as a disabled or greyed out row.

2. The stores that are associated with the current context. There are three columns:

◦ Provider

◦ Store

◦ Domains

3. The stores from all parent contexts. There are three columns:

◦ Provider

◦ Store

◦ Domains

The links in the main page are all context menu links which can be used to navigate more
efficiently.

Figure 10. Context menus are available when the mouse hovers over links

Navigating from the credentials action main page, brings you to the credentials store sub-action.

25

Figure 11. Credentials store sub-action

The credentials store sub-action consists of a single table with two columns:

• Domain

• Description

You can either Add domain or navigate to an existing one. The links to existing domains are all
context menu enabled.

Adding a domain will display the Add domain page:

26

Figure 12. Adding a new credentials domain / configuring an existing credentials domain.

The only mandatory field is the domain name.

The domain name is used as an URL path component so URL unsafe characters are
not recommended.

If you intend to use either the REST API or the Jenkins CLI API for interacting with
the domain then things will be significantly easier if you stick to alpha-numeric
domain names with just - or _ as a word separator.

It is recommended to provide a description.

If you do not provide a domain specification then the domain is effectively equivalent to the global
domain, so you will probably want to define a specification.

27

Figure 13. Adding domain specifications

The most basic domain specification is a hostname specification

28

Figure 14. Configuring a hostname domain specification

When configuring credentials domains remember:

The credentials API will exclude credentials from domains that do not
match.

This means that if you define a hostname specification of say, *.test.example.com then credentials
in this domain will be available for selection in cases where the plugin populating the drop-down
selection list either has not declared a hostname requirement or has declared a matching
requirement.

The domain details page consists of a table listing all credentials defined in the domain.

29

Figure 15. Domain details

There are three columns:

• Name

• Kind

• Description

Adding credentials requires selection of the type of credentials to add. A credentials instance
cannot be changed from one type to another, though you can update the credentials with new
secrets.

30

Figure 16. Adding credentials to a credentials domain

Each credentials type defines its own fields, but all credentials should have the following common
fields:

Scope

If the credentials domain is in a credentials store that supports multiple scopes then you will be
able to select the credentials scope.

Credential scope

When exposing a credentials from the Jenkins root object, you will also need to
decide what scope to give the exposed credentials.

• Using the SYSTEM scope will allow the credentials to be used for launching
Jenkins agents as well as for some secondary system wide processes

configured through the Jenkins › Manage Jenkins › Configure Jenkins
screen. The credential will not be available to jobs within Jenkins.

• Using the GLOBAL scope will, in addition to the usage permitted by SYSTEM
scope, will make the credential available to all jobs within Jenkins running
as an authentication that has the Credentials/UseItem permission.

ID

The credentials ID is used to persist references to a credentials in job configuration, etc

31

Credentials IDs

The Credentials API plugin assigns a semi-unique identifier to every credentials.

It is strongly likely that you will need to reference credentials from pipeline
scripts. Make your life easier and assign the credentials ID rather than relying on
the randomly generated UUID.

When giving credentials an ID, remember that the credentials storage may be
migrated to an external credentials store. Because we cannot know a priori what
will be valid IDs in an external credentials store it is recommended to follow some
basic principles in assigning IDs:

• Keep them less than approximately 40 characters long

• Keep to alpha-numeric with -, _ and . as separators

Description

The description is an optional text field. Normally when displaying a list of credentials for
selection, the description will be appended to the credentials name, so this field can be useful to
help users select the appropriate credentials in cases where there may be confusion.

The credentials details screen for each credentials will show the usage tracking information
available for that credentials instance:

Figure 17. A credentials instance that has not been used yet

32

As the credentials are used by different jobs, the usage tracking information should be populated.

The cooperation of credentials consumer plugins is required in order to track
usage. The usage tracking information should not be considered as definitive.

Figure 18. A credentials instance that has been tracked as used.

There are three actions available on a credentials instance:

Update

Allows changing the fields of the credentials instance.

Delete

Removes the credentials instance.

Move

Allows moving the credentials instance to another domain in the same credentials store.

33

It is not currently possible to move a credentials instance from one store to
another store (JENKINS-20075).

There are potential issues with allowing credentials instances to be moved from
one store to another. In the event that the feature is ever implemented, it is
likely that moving between stores would be restricted to moving between stores
from the same provider.

REST API

The REST API for managing credentials uses the similar URLs as the Web UI.

Your Jenkins instance probably has CSRF protection enabled or uses
authentication then you will need to provide the required headers to the REST
request. Details of the exact headers required depends on the CSRF protection that
has been configured and the exact authentication mechanism being used.

Listing domains

The most basic URLs for listing the domains in a store are:

• http://jenkins root url/path to context/credentials/store/store

id/api/xml?tree=domains[urlName] for the XML representation

• http://jenkins root url/path to context/credentials/store/store

id/api/json?tree=domains[urlName] for the JSON representation

This URL expects a GET request. You can modify the tree=… query parameter to fetch additional
data.

34

https://issues.jenkins-ci.org/browse/JENKINS-20075

Example of retrieving the XML representation of domains stored in the folder store /example-folder folder

$ curl -g https://jenkins.example.com/job/example-folder/credentials/store/folder/\
api/xml?tree=domains[urlName]
<credentialsStoreActionImpl
_class='com.cloudbees.hudson.plugins.folder.properties.FolderCredentialsProvider$Folde
rCredentialsProperty$CredentialsStoreActionImpl'>
 <domains>
 <_
_class='com.cloudbees.plugins.credentials.CredentialsStoreAction$DomainWrapper'>
 <urlName>_</urlName>
 </_>
 <production
_class='com.cloudbees.plugins.credentials.CredentialsStoreAction$DomainWrapper'>
 <urlName>production</urlName>
 </production>
 <testing
_class='com.cloudbees.plugins.credentials.CredentialsStoreAction$DomainWrapper'>
 <urlName>testing</urlName>
 </testing>
 </domains>
</credentialsStoreActionImpl>

① Whitespace has been added to the response to make a more readable example

35

Example of retrieving the JSON representation of credentials IDs stored in the testing credentials domain
in the /example-folder folder

$ curl -g https://jenkins.example.com/job/example-folder/credentials/store/folder/\
api/json?tree=domains[urlName]
{

"_class":"com.cloudbees.hudson.plugins.folder.properties.FolderCredentialsProvider$Fol
derCredentialsProperty$CredentialsStoreActionImpl",
 "domains":{
 "_":{

"_class":"com.cloudbees.plugins.credentials.CredentialsStoreAction$DomainWrapper",
 "urlName":"_"
 },
 "production":{

"_class":"com.cloudbees.plugins.credentials.CredentialsStoreAction$DomainWrapper",
 "urlName":"production"
 },
 "testing":{

"_class":"com.cloudbees.plugins.credentials.CredentialsStoreAction$DomainWrapper",
 "urlName":"testing"
 }
 }
}

① Whitespace has been added to the response to make a more readable example

Creating a domain

The URL for creating a domain is: http://jenkins root url/path to context

/credentials/store/store id/createDomain. This URL expects a POST request with a Content-Type
header of type application/xml. The body of the POST request should be the XML configuration of
the credentials domain.

The expected responses are:

HTTP/200

Success, the domain has been created.

HTTP/400

Bad request, this credentials store does not support user created credentials domains.

HTTP/409

Failure, a domain with that name already exists.

HTTP/50x

Could not parse the supplied domain XML body.

36

Example of adding a testing credentials domain the /example-folder folder.

$ cat > domain.xml <<EOF
<com.cloudbees.plugins.credentials.domains.Domain>
 <name>testing</name>
 <description>Credentials for use during testing of any new recipes</description>
 <specifications>
 <com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 <includes>*.test.example.com</includes>
 <excludes></excludes>
 </com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 </specifications>
</com.cloudbees.plugins.credentials.domains.Domain>
EOF
$ curl -X POST -H content-type:application/xml -d @domain.xml \
https://jenkins.example.com/job/example-folder/credentials/store/folder/\
createDomain

Managing the configuration of an existing domain

The URL for managing the configuration of an existing domain is: http://jenkins root url/path to
context/credentials/store/store id/domain/domain name/config.xml. This URL expects GET, POST or
DELETE request.

A GET request will retrieve the existing configuration. The expected response is:

HTTP/200

Success, the body of the response is the XML representation of the credentials domain.

Example of retrieving the configuration of the testing credentials domain in the /example-folder folder

$ curl https://jenkins.example.com/job/example-folder/credentials/store/folder/\
domain/testing/config.xml
<com.cloudbees.plugins.credentials.domains.Domain plugin="credentials@2.1.14">
 <name>testing</name>
 <description>Credentials for use during testing of any new recipes</description>
 <specifications>
 <com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 <includes>*.test.example.com</includes>
 <excludes></excludes>
 </com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 </specifications>
</com.cloudbees.plugins.credentials.domains.Domain>

A POST request will update the existing configuration. The expected response is:

HTTP/200

Success.

37

Example of updating the configuration of the testing credentials domain in the /example-folder folder

$ cat > domain.xml <<EOF
<com.cloudbees.plugins.credentials.domains.Domain>
 <name>testing</name>
 <description>Credentials for use against the *.test.example.com hosts</description>
 <specifications>
 <com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 <includes>*.test.example.com</includes>
 <excludes></excludes>
 </com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 </specifications>
</com.cloudbees.plugins.credentials.domains.Domain>
EOF
$ curl -X POST -H content-type:application/xml -d @domain.xml \
https://jenkins.example.com/job/example-folder/credentials/store/folder/\
domain/testing/config.xml

A DELETE requests will remove the credentials domain and all credentials associated with the
domain. The expected response is:

HTTP/200

Success.

Example of removing the testing credentilas domain from the /example-folder folder

$ curl -X DELETE https://jenkins.example.com/job/example-
folder/credentials/store/folder/\
domain/testing/config.xml

Listing credentials within a credentials domain.

The most basic URLs for listing the credentials in a domain are:

• http://jenkins root url/path to context/credentials/store/store id/domain/domain

name/api/xml?tree=credentials[id] for the XML representation

• http://jenkins root url/path to context/credentials/store/store id/domain/domain

name/api/json?tree=credentials[id] for the JSON representation

This URL expects a GET request. You can modify the tree=… query parameter to fetch additional
data.

38

Example of retrieving the XML representation of credentials IDs stored in the testing credentials domain in
the /example-folder folder

$ curl -g https://jenkins.example.com/job/example-folder/credentials/store/folder/\
domain/testing/api/xml?tree=credentials[id]
<domainWrapper
_class='com.cloudbees.plugins.credentials.CredentialsStoreAction$DomainWrapper'>
 <credential>
 <id>deploy-key</id>
 </credential>
 <credential>
 <id>c5e80c99-d7c3-4acb-a5e1-73592ceebbbc</id>
 </credential>
</domainWrapper>

① Whitespace has been added to the response to make a more readable example

Example of retrieving the JSON representation of credentials IDs stored in the testing credentials domain
in the /example-folder folder

$ curl -g https://jenkins.example.com/job/example-folder/credentials/store/folder/\
domain/testing/api/json?tree=credentials[id]
{
 "_class":"com.cloudbees.plugins.credentials.CredentialsStoreAction$DomainWrapper",
 "credentials":[
 {"id":"deploy-key"},
 {"id":"c5e80c99-d7c3-4acb-a5e1-73592ceebbbc"}
]
}

① Whitespace has been added to the response to make a more readable example

Creating a credentials

The URL for creating a domain is: http://jenkins root url/path to context

/credentials/store/store id/domain/domain name/createCredentials. This URL expects a POST

request with a Content-Type header of type application/xml. The body of the POST request should be
the XML configuration of the credentials domain.

 The global domain has the name _

The expected responses are:

HTTP/200

Success, the credentials has been created.

HTTP/409

Failure, a credentiasl with that id already exists.

39

HTTP/50x

Could not parse the supplied domain XML body.

Example of adding a deploy-key credential using the username wecoyote and the password secret123 in the
testing domain of the /example-folder folder.

$ cat > credential.xml <<EOF
<com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl>
 <scope>GLOBAL</scope>
 <id>deploy-key</id>
 <username>wecoyote</username>
 <password>secret123</password>
</com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl>
EOF
$ curl -X POST -H content-type:application/xml -d @credential.xml \
https://jenkins.example.com/job/example-folder/credentials/store/folder/\
domain/testing/createCredentials

The secret is passed in the clear so that Jenkins can then encrypt it before storing to
disk.

Managing an existing credentials instance

The URL for managing the an existing credentials instance is: http://jenkins root url/path to
context/credentials/store/store id/domain/domain name/credential/credentials id/config.xml.
This URL expects GET, POST or DELETE request.

A GET request will retrieve the existing configuration. The expected response is:

HTTP/200

Success, the body of the response is the XML representation of the credentials domain.

 The secret portion of the credentials instance will always be replaced with
<secret-redacted/>

Example of retrieving the configuration of the deploy-key credential from the testing credentials domain in
the /example-folder folder

$ curl https://jenkins.example.com/job/example-folder/credentials/store/folder/\
domain/testing/credentials/deploy-key/config.xml
<com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl
plugin="credentials@2.1.14">
 <scope>GLOBAL</scope>
 <id>deploy-key</id>
 <username>wecoyote</username>
 <password>
 <secret-redacted/>
 </password>
</com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl>

40

A POST request will update the existing configuration. The expected response is:

HTTP/200

Success.

Example of updating the details of the deploy-key credentials instance in the testing credentials domain in
the /example-folder folder

$ cat > credential.xml <<EOF
<com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl>
 <scope>GLOBAL</scope>
 <id>deploy-key</id>
 <username>wecoyote</username>
 <password>pAssw0rd</password>
</com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl>
EOF
$ curl -X POST -H content-type:application/xml -d @domain.xml \
https://jenkins.example.com/job/example-folder/credentials/store/folder/\
domain/testing/credentials/deploy-key/config.xml

A DELETE requests will remove the credentials . The expected response is:

HTTP/200

Success.

Example of removing the deploy-key credentials instance from the testing credentilas domain in the
/example-folder folder

$ curl -X DELETE https://jenkins.example.com/job/example-
folder/credentials/store/folder/\
domain/testing/credentials/deploy-key/config.xml

Jenkins Command Line Interface

Navigating credentials stores

Unlike the Web UI or the REST API which can infer the credentials store from the URL, the Jenkins
CLI needs to know how to identify the credentials store that you intend to operate on.

The Jenkins CLI interface uses a composite Store Id. The Store Id consists of three components
separated by the ::. The components are provider :: resolver :: context path.

TThe Credentials API provides implementations for three stores, but as the stores are an extension
point it is probable best to illustrate the general process for identifying the store id:

1. List the credentials providers:

41

Listing the credentials providers

$ java -jar jenkins-cli.jar -s https://jenkins.example.com/ \
list-credentials-providers
Name
Provider
==
==============================
FolderCredentialsProvider
Folder Credentials Provider
SystemCredentialsProvider
Jenkins Credentials Provider
UserCredentialsProvider User
Credentials Provider
com.cloudbees.hudson.plugins.folder.properties.FolderCredentialsProvider
Folder Credentials Provider
com.cloudbees.plugins.credentials.SystemCredentialsProvider$ProviderImpl
Jenkins Credentials Provider
com.cloudbees.plugins.credentials.UserCredentialsProvider User
Credentials Provider
folder
Folder Credentials Provider
system
Jenkins Credentials Provider
user User
Credentials Provider

The each Credentials Provider is exposed using up to three different names (the names are
derived by code and simplifications are only exposed if there are no conflicting credentials
provider implementations). In the case of the root system credentials store, the most specific
provider identifier is
com.cloudbees.plugins.credentials.SystemCredentialsProvider$ProviderImpl but in the above
instance we also have available the short form system.

2. List the context resolvers

42

Listing the context resolvers

$ java -jar jenkins-cli.jar -s https://jenkins.example.com/ \
list-credentials-context-resolvers
Name
Resolves
===
=======
ItemContextResolver
Items
SystemContextResolver
Jenkins
UserContextResolver
Users
com.cloudbees.plugins.credentials.CredentialsSelectHelper$ItemContextResolver
Items
com.cloudbees.plugins.credentials.CredentialsSelectHelper$SystemContextResolver
Jenkins
com.cloudbees.plugins.credentials.CredentialsSelectHelper$UserContextResolver
Users
item
Items
system
Jenkins
user
Users

While context resolvers are also an extension point, it is probably unlikely that plugins will find
it necessary to define new resolvers in addition to the standard ones. Normally the context
resolvers that we want are either
com.cloudbees.plugins.credentials.CredentialsSelectHelper$SystemContextResolver (which has
the short alias of system) or
com.cloudbees.plugins.credentials.CredentialsSelectHelper$ItemContextResolver (which has the
short alias of item)

If you want to interact with your own per-user credential store then you will want the
com.cloudbees.plugins.credentials.CredentialsSelectHelper$UserContextResolver (which has the
short alias of user)

3. Specify the context path

◦ For the system context resolver, this is always the fixed value jenkins.

◦ For the item context resolver, this is the full name of the item (folder). The full name is
normally the names separated by '/' characters. The full name is not the URL of the job as
that includes /job/ in the URL. For example a folder with the URL http://local.example.com/
jenkins/job/example-folder/job/example-sub-folder/ would have the full name /example-
folder/example-sub-folder

43

http://local.example.com/jenkins/job/example-folder/job/example-sub-folder/
http://local.example.com/jenkins/job/example-folder/job/example-sub-folder/
http://local.example.com/jenkins/job/example-folder/job/example-sub-folder/
http://local.example.com/jenkins/job/example-folder/job/example-sub-folder/
http://local.example.com/jenkins/job/example-folder/job/example-sub-folder/
http://local.example.com/jenkins/job/example-folder/job/example-sub-folder/
http://local.example.com/jenkins/job/example-folder/job/example-sub-folder/
http://local.example.com/jenkins/job/example-folder/job/example-sub-folder/
http://local.example.com/jenkins/job/example-folder/job/example-sub-folder/
http://local.example.com/jenkins/job/example-folder/job/example-sub-folder/
http://local.example.com/jenkins/job/example-folder/job/example-sub-folder/

The config.xml of that folder would - by default - be stored in
$JENKINS_HOME/jobs/example-folder/jobs/example-sub-folder.

The breadcrumb bar, if the display name has been customized for these
folders might look like Jenkins » Example Folder » Example Sub-Folder)

◦ For the user context resolver, this is the username.

So the some possible Store Id variants are:

• system::system::jenkins for the root credentials store

• folder::item::/full/name/of/folder for a per-folder credentials store

• user::user::wecoyote for the per-user store of Wile E. Coyote, who’s username is wecoyote.

Listing credentials and domains

The CLI Command for listing credentials and domains in a credentials store is list-credentials.

44

Example of listing the credentials and domains in the /example-folder folder.

$ java -jar jenkins-cli.jar -s https://jenkins.example.com/ \
list-credentials folder::item::/example-folder
===
Domain (global)
Description
of Credentials 1
===
Id Name
==================================== ==========
7d9702ee-9ce3-4ecd-82b5-9ebe125459fb bob/******
===

===
Domain production
Description Credentials used for the production roadrunner
cooking infrastructure
of Credentials 1
===
Id Name
==================================== ============
ae68086e-ccb1-43cc-8820-4f111bceda7c wilma/******
===

==
Domain testing
Description Credentials for use during testing of any new
recipes
of Credentials 2
==
Id Name
==================================== ===============
deploy-key wecoyote/******
c5e80c99-d7c3-4acb-a5e1-73592ceebbbc fred/******
==

Creating a domain

The CLI command for creating a credentials domain is create-credentials-domain-by-xml.

This command takes the XML configuration from standard input

45

Example of adding a testing credentials domain the /example-folder folder.

$ cat > domain.xml <<EOF
<com.cloudbees.plugins.credentials.domains.Domain>
 <name>testing</name>
 <description>Credentials for use during testing of any new recipes</description>
 <specifications>
 <com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 <includes>*.test.example.com</includes>
 <excludes></excludes>
 </com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 </specifications>
</com.cloudbees.plugins.credentials.domains.Domain>
EOF
$ java -jar jenkins-cli.jar -s https://jenkins.example.com/ \
create-credentials-domain-by-xml folder::item::/example-folder < domain.xml

Retrieving a domain’s configuration

The CLI command for retrieving a credentials domain configuration is get-credentials-domain-as-
xml

Example of retrieving the configuration of the testing credentials domain from the /example-folder folder.

$ $ java -jar jenkins-cli.jar -s https://jenkins.example.com/ \ get-credentials-
domain-as-xml folder::item::/example-folder testing
<com.cloudbees.plugins.credentials.domains.Domain plugin="credentials@2.1.14">
 <name>testing</name>
 <description>Credentials for use during testing of any new recipes</description>
 <specifications>
 <com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 <includes>*.test.example.com</includes>
 <excludes></excludes>
 </com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 </specifications>
</com.cloudbees.plugins.credentials.domains.Domain>

Updating a domain

The CLI command for updating an existing credentials domain is update-credentials-domain-by-xml

46

This command takes the XML configuration from standard input

Example of updating the testing credentials domain in the /example-folder folder.

$ cat > domain.xml <<EOF
<com.cloudbees.plugins.credentials.domains.Domain>
 <name>testing</name>
 <description>Credentials for use during testing of any new recipes</description>
 <specifications>
 <com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 <includes>*.test.example.com</includes>
 <excludes></excludes>
 </com.cloudbees.plugins.credentials.domains.HostnameSpecification>
 </specifications>
</com.cloudbees.plugins.credentials.domains.Domain>
EOF
$ java -jar jenkins-cli.jar -s https://jenkins.example.com/ \
update-credentials-domain-by-xml folder::item::/example-folder testing < domain.xml

Removing a domain

The CLI command for deleting a credentials domain and all associated credentials is delete-
credentials-domain

Example of deleting the testing credentials domain from the /example-folder folder.

$ java -jar jenkins-cli.jar -s https://jenkins.example.com/ \
delete-credentials-domain folder::item::/example-folder testing

Creating credentials

The create-credentials-by-xml Jenkins CLI command is the command used to expose credentials.

47

This command needs the XML representation of the credential we want to expose. The best way to
get this is to inspect the configuration of an existing credential of the same type.

If we navigate using a Web browser to find an existing credential, we will end up at an URL
something like: https://jenkins.example.com/credentials/store/system/domain/_/credential/some-

credential-id/ by appending config.xml to the URL we can see the configuration of that credentials,
e.g.:

Inspecting the config.xml of an existing username password credential.

<com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl plugin=
"credentials@2.1.14">
 <scope>GLOBAL</scope>
 <id>some-credential-id</id>
 <description>This is an example username password credential</description>
 <username>wecoyote</username>
 <password>
 <secret-redacted/>
 </password>
</com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl>

Inspecting the config.xml of an existing SSH private key credential.

<com.cloudbees.jenkins.plugins.sshcredentials.impl.BasicSSHUserPrivateKey plugin="ssh-
credentials@1.13">
 <scope>GLOBAL</scope>
 <id>some-credential-id</id>
 <description>This is an example ssh key credential</description>
 <username>wecoyote</username>
 <privateKeySource class=
"com.cloudbees.jenkins.plugins.sshcredentials.impl.BasicSSHUserPrivateKey$DirectEntryP
rivateKeySource">
 <privateKey>
 <secret-redacted/>
 </privateKey>
 </privateKeySource>
</com.cloudbees.jenkins.plugins.sshcredentials.impl.BasicSSHUserPrivateKey>

 when accessing credentials in this way, the secret text will be replaced by <secret-
redacted/>

So it is just a question of providing our own config.xml with the appropriate content.

48

https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/
https://jenkins.example.com/credentials/store/system/domain/_/credential/some-credential-id/

When providing the actual secret value, you should exploit the way Jenkins
deserializes secrets. If the secret does not decrypt then it is assumed to be the
corresponding unencrypted value, which Jenkins will then encrypt before
persisting the credentials.

Example of adding a deploy-key credential using the username wecoyote and the password secret123 in the
testing domain of the /example-folder folder.

$ cat > credential.xml <<EOF
<com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl>
 <scope>GLOBAL</scope>
 <id>deploy-key</id>
 <username>wecoyote</username>
 <password>secret123</password>
</com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl>
EOF
$ java -jar jenkins-cli.jar -s https://jenkins.example.com/ \
create-credentials-by-xml folder::item::/example-folder testing < credential.xml

Retrieving credentials

The get-credentials-as-xml Jenkins CLI command is the command used to remove credentials.

Figure 19. The Jenkins CLI command for removing credentials from a credentials store.

Example of removing the deploy-key credential from the testing domain of the /example-folder folder.

$ java -jar jenkins-cli.jar -s https://jenkins.example.com/ \
get-credentials-as-xml folder::item::/example-folder testing deploy-key
<com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl
plugin="credentials@2.1.14">
 <scope>GLOBAL</scope>
 <id>deploy-key</id>
 <username>wecoyote</username>
 <password>
 <secret-redacted/>
 </password>
</com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl>

Updating credentials

The CLI command for updating an existing credentials domain is update-credentials-by-xml

49

This command takes the XML configuration from standard input

Example of updating the deploy-key credentials in the testing domain of the /example-folder folder.

$ cat > credential.xml <<EOF
<com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl>
 <scope>GLOBAL</scope>
 <id>deploy-key</id>
 <username>wecoyote</username>
 <password>secret123</password>
</com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl>
EOF
$ java -jar jenkins-cli.jar -s https://jenkins.example.com/ \
update-credentials-by-xml folder::item::/example-folder testing deploy-key <
credentials.xml

Deleting credentials

The delete-credentials Jenkins CLI command is the command used to remove credentials.

Figure 20. The Jenkins CLI command for removing credentials from a credentials store.

Example of removing the deploy-key credential from the testing domain of the /example-folder folder.

$ java -jar jenkins-cli.jar -s https://jenkins.example.com/ \
delete-credentials folder::item::/example-folder testing deploy-key

Using credentials
The Credentials API plugin provides a standardized control for selecting credentials.

Depending on how the consuming plugin author has configured this control it can be in one or two
modes:

50

• Select only mode, which will look something like:

• Switchable mode, which has a radio button to allow switching between select mode

and expression mode

In select mode there is an Add button. This button displays a drop-down of all the credentials stores
in the context. Clicking on a store will open a modal dialog that enabled addition of credentials.

Figure 21. The select control’s Add button menu showing available contexts

51

Figure 22. The modal dialog for adding credentials

The Add dialog currently has no way to know what types of credentials are valid
for the credentials select control that triggered it (JENKINS-40293)

In general it will always open with the "first" available credentials type, which is
typically Username & Password.

You can add credentials to any existing credentials domain in the selected credentials store.

If the browser window size is too small and hides modal dialog’s Add and Cancel
buttons, the dialog can be closed with the ESC key.

After the dialog has closed, all the credentials select controls on the page will request an updated
list of available credentials.

Credentials parameters

The Credentials API plugin defines a credentials parameter type. Credentials parameters are only
useful with credentials select controls that offer expression mode.

52

https://issues.jenkins-ci.org/browse/JENKINS-40293

There are five fields to configure for the credentials parameter:

Name

the name of the credentials parameter, this name will be used in the credentials expression.
Convention is to use all UPPERCASE with _ as a word separator.

Credentials type

the type of credentials to limit selection to.

Required

when checked, a credentials instance must be selected, when unchecked the - none - option will
be available.

Default Value

the default credentials to select by default.

Description

the description of the parameter to display to users.

In a parameterized job, you can then toggle the credentials select controls to parameter expression
and provide the expression in the form ${PARAMETER NAME}

Only simple parameter expressions of the form ${ followed by the parameter
name followed by } are allowed.

When building the job, the user will be presented with a credentials select control in select only
mode for each credentials parameter.

53

Figure 23. Building a parameterized job with a credentials parameter

The list of available credentials will depend on a number of factors:

• If the credentials parameter definition specified a credentials type, only credentials of that type
will be available for selection.

• If the user has the Credentials/UseOwn (which by default is implied by the Item/Build permission)
then any suitable credentials from their own per-user credentials store will be available from
the drop-down list.

• If the user has the Credentials/UseItem (which by default is implied by the Job/Configure
permission) then any suitable credentials from the default authentication that the build job will
run as will be available from the drop-down list.

• If the credentials parameter definition specified a default value, that value will always be
present irrespective of whether the user has the Credentials/UseItem permission.

Credentials parameters can only access the per-user credentials store of the job
that was explicitly triggered by the user.

Downstream jobs will be passed the credentials ID but will not be passed access to
the user’s per-user credentials store. This restriction is to prevent a malicious actor
adding a hidden job as a downstream job and thereby gaining access to the per-
user credentials store.

54

https://github.com/jenkinsci/credentials-plugin/blob/dc35d4d99f9d4e9bf5fd434aee4f6e1bfca4c47d/src/main/java/com/cloudbees/plugins/credentials/CredentialsProvider.java#L144
https://github.com/jenkinsci/credentials-plugin/blob/dc35d4d99f9d4e9bf5fd434aee4f6e1bfca4c47d/src/main/java/com/cloudbees/plugins/credentials/CredentialsProvider.java#L160
https://github.com/jenkinsci/credentials-plugin/blob/dc35d4d99f9d4e9bf5fd434aee4f6e1bfca4c47d/src/main/java/com/cloudbees/plugins/credentials/CredentialsProvider.java#L160

The credentials parameter value will be the ID of the selected credentials. Use the Credentials
Binding plugin if you need to get access to the secrets of a credentials instance, for example to use a
password for authenticating a request to a third party system.

55

https://plugins.jenkins.io/credentials-binding
https://plugins.jenkins.io/credentials-binding

	User guide
	Table of Contents
	User guide
	Background
	Overview
	Administrative controls
	Managing credentials
	Using credentials

